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Spatio-temporal development of the diffuse barrier discharge in nitrogen

R. Brandenburg', V. A. Maiorov2, Yu. B. Golubovskii2, H.-E. Wagner',
K. V Kozlov3, J. F. Behnke', J. Behnke', P. Michell

2 'University of Greifswald, Institute of Physics, Domstrasse 10 a, 17489 Greifswald, Germany
St. Petersburg State University, Physical Faculty, Ulianovskaja 1, Petrodvorets, 198904 St. Petersburg, Russia

3 Moscow State University, Department of Chemistry, 119899 Moscow, Russia

Results of spatio-temporally resolved optical emission spectroscopy of the diffuse dielectric barrier
discharge in nitrogen are presented and compared with results of numerical modelling. The model is
taking into account the surface processes and involves the special electrode geometry used in the
experiment.

1. Introduction The densities of excited states A3Su+ and C3? u of
nitrogen were calculated on the basis of the

Within the last few years diffuse barrier discharges (BD) corresponding balance equations. Since the lifetime of
often referred to as homogeneous BD or as atmospheric the metastable state is determined by the frequency of
pressure glow discharges (APGD) became an object of quenching by impurity (NO) atoms, this lifetime was
intensive experimental and theoretical investigations [1]. chosen arbitrarily (3"10 s-) in order to fit the
The diffuse BD in nitrogen has been investigated by experimental results.
means of voltage-current ocsillography, short exposure a) b)
time photography, optical emission spectroscopy (OES) .
[2, 6] as well as numerical modelling [3, 4]. MOM

d t0,,The criterion to generate a diffuse BD is the presence of R- .
carrier charges at a low electric field, i.e. a memory -- -- ---------
effect responsible for the production of primary d ..... .... -
electrons below a voltage leading to filament formation. _________

Gl-Several processes has been discussed as Penning
ionisation due to metastable collisions [3] or electron --
desorption from the dielectric surface [4]. In these Figure 1: Electrode arrangement used
contribution results of spatio-temporally resolved in the experiment (a) and in the model (b)
emission spectroscopy are presented and compared with
results of numerical modelling including the surface 4. Results and discussion
processes.

The emission spectrum of the diffuse BD in nitrogen
2. Experimental technique consists of the second positive system of nitrogen (SPS),

Diffuse BD. generated in pure flowing nitrogen and a NOr-bands and band of ON 2-excimer at 557 nm [2]. For

discharge gap of 1.0 mm was investigated with a 0-0 transition of the SPS and 0-3 transition of NO, the
modified experimental set-up already used for spatio-temporally resolved intensity distributions are
diagnostics of filamentary barrier discharges [5, 6]. shown in figure 2. In the pictures the time scale slightly
Especially the same semi-spherical electrodes (thickness exceeds the period of the driving voltage (l/T =
of the glass was 1.5 mm) were used (see figure la). Due 1/6.5 kHz = 153 Igs) and the upper electrode is the
to the combined action of a single photon counting cathode within the first half period. The intensity is
device and an electrically triggered pattern generator time coded in grey-scale in logarithmic steps. The calculated
resolution of 2.3 jus has been archived. The spatial density of the N2(C)-molecules is shown in figure 3a.
resolution along the discharge axis was 0.2 min by using Since the effective life times of the excited states are
stepper motor controlled imaging optics. orders of magnitude smaller than the characteristic time

scales for density evolution, the pictures 2a and 3a can

3. Model be compared directly. Furthermore it is known that the
excitation of the NO(A) state is dominated by N2-

The model of the diffuse BD was based on the system of metastable collisions [2, 6]. Therefore the calculated
fluid equations coupled with the Poisson equation. The densities of the N2(A)-densities is shown in figure 3b and
details of the model and the solution method can be can be directly compared with the NOy-signal.
found in [4]. All intensity distributions as well as density profiles
Special attention was paid to the influence of the shows the maximum near the momentarily anode. The
electrode geometry. To simulate qualitatively small SPS respectively the N2(C)-density growths
deviations from plane geometry, electrodes were divided exponentially towards the anode and between the two
into radial pieces (see figure lb), and the axial electric half widths no signal is seen. Since the N2(C) excitation
field was assumed to be dependent on the radius, is initiated by electrons [2] this demonstrates that the
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Figure 2: Results of spatio-temporally resolved OES Figure 3: Results of numerical modelling
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